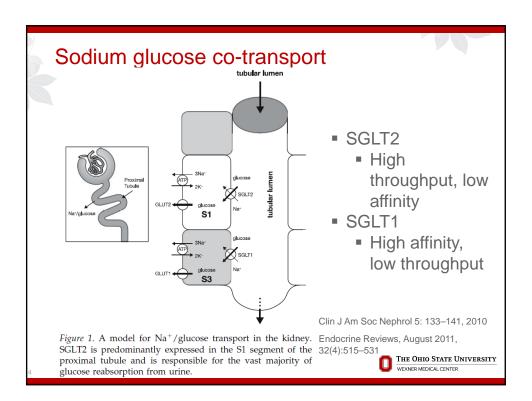


Outline

- Introduction to SGLT-2 inhibitors
 - History lesson
 - Pharmacology
 - Available forms
- Pros
 - Treatment effects
 - Secondary benefits
- Cons
 - Major side effects
 - Ketoacidosis



SGLT inhibitors, a brief history

- 1835 Phlorizin is isolated from the bark of fruit trees (apple and cherry trees)
- 1886 Experiments performed by Von Mering demonstrated that ingesting 1g/kg body weight of phlorizin resulted in glucosuria
- 1930s Action of phlorizin described
- 1950s to 1970s specifics are learned that phlorizin competitively inhibits SGLT1 and SGLT2 (with greater affinity for SGLT2)
- 2003 mutations in the SGLT2 gene described related to Familial Renal Glucosuria

Clin J Am Soc Nephrol 5: 133–141, 2010 Endocrine Reviews, August 2011, 32(4):515–531 Scheen, AJ; <u>Drugs</u>. Jan 2015, Volume 75, Issue 1, pp 33-59

Sodium Glucose Co-transporters

Table 1. Substrates and distribution of human glucose transporters

Transporter (Gene)	Substrate	Size (Amino Acids)	Distribution
SGLT1 (SLC5A1)	Glucose Galactose	664	Intestine, trachea, kidney, heart, brain, testis and prostate
SGLT2 (SLC5A2)	Glucose	672	Kidney, brain, liver, thyroid, muscle, and heart
SGLT4 (SLC5A9)	Glucose Mannose	699	Intestine, trachea, kidney, liver, brain, lung, uterus, and pancreas
SGLT5 (SLC5A10)	Glucose (predicted)	596	Kidney
SGLT6/SMIT2 (SLC5A11)	Myoinositol Glucose	675	Brain, kidney, and intestine
SMIT1 (SLC5A3)	Myoinositol Glucose	718	Brain, heart, kidney, and lung

Clin J Am Soc Nephrol 5: 133-141, 2010

Pharmacology SGLT2 inhibitors

- Under normal conditions, the glomeruli filter 180 L of plasma per day, with an average of 90 mg/dL of glucose; ~162 g/day of glucose.
- 100% of the glucose is reabsorbed
 - 90% by SGLT2
 - 10% by SGLT1
- Under normal conditions, the threshold for these transporters is around 375 mg/min or a plasma glucose of about 180 mg/dL; above this level glucose is secreted in the urine.

Endocrine Reviews, August 2011, 32(4):515–531
Scheen, AJ; <u>Drugs</u>. Jan 2015, Volume 75, Issue 1, pp 33-59

THE OHIO STATE UNIVERSITY
WEXNER MEDICAL CENTER

	Dapagliflozin [12, 13, 24]	Canagliflozin [16, 25]	Empagliflozin [17, 26]
Trade name	Forxiga [®] (Europe); Farxiga TM (USA)	Invokana® (Europe and USA)	Jardiance® (Europe and USA)
Tablets (mg)	5, 10	100, 300	10, 25
Pharmacokinetic paran	neters		
Oral bioavailability (%)	78	≈ 65	>60
Food effect	Not clinically relevant	Not clinically relevant	Not clinically relevant
t_{max} (h)	1-2	1–2	1
Volume of distribution (L)	118	119	74
Plasma protein binding (%)	91	98	86
$t_{1/2}$ (h)	12.2	11-13	12.4
Metabolism	Extensive glucuronidation to inactive conjugates (primarily dapagliflozin 3-O glucuronide)	Extensively metabolised by O-glucuronidation to two major inactive metabolites (M5 and M7)	Extensively metabolised by glucuronidation and, to a lesser extent, oxidation to 6 inactive metabolites
Elimination	Primarily in urines as inactive metabolites: 2 % eliminated as unchanged drug in urine	Elimination in urines and faeces: <1 % eliminated as unchanged drug in urine	Eliminated in urine and faeces: 28.6 % excreted unchanged in urine
Drug interactions	Not clinically relevant	Not clinically relevant	Not clinically relevant

Name (# pts)	A1C (%) Reduction	Renal dose adjustment	Liver dose adjustment	Cost – retail*
Dapa (3,986)	-0.52 (-0.6 to -0.45)	Not recommended if GFR < 60	none	\$370 30 days
Cana (6,700)	-1.08 (mono) (-1.25 to -0.9) -0.73 (add on) (-0.84 to -0.61)	Max dose 100mg GFR 45- 60 Not recommdened GFR < 45	Class C: not recommended	\$370 30 days
Empa (6,200)	-0.62 (10 mg) (-0.68 to -0.57) -0.66 (25 mg) (-0.76 to -0.57)	Max dose 10mg if GFR 45-60 Not recommended for GFR < 45	none	\$370 30 days

Pros The Ohio State University Wearing Medical Center

Case 1

- 49 year old morbidly obese male with GERD, OSA, HTN, NAFLD, and DM II for 6 months.
 - Weight: 338 lbs
 - BMI: 44.95 kg/m2
- Home glucose levels:
 - 170-200 fasting, 110-150 at HS
 - **A1C:** 9.4%

- Meds:
 - Metformin 1000 daily
 - Sitagliptin 100mg daily
 - Glimepiride 1mg daily
 - Amlodipine, losartan, HCTZ, atorvastatin, and fenofibrate
- Plan:
 - Diabetes education, weight loss goal of 3-5%, increase Metformin to twice daily.

Case 1

- Four months later:
 - Only med change Metformin 1000mg 2XD
 - Weight down to 330 lbs (-2.4%)
 - A1C now 7.2%
 - Added canagliflozin 100mg daily
- Five months later:
 - Remains on Metformin 1000mg twice a day, Glimperide 1mg, Canagliflozin 100mg, stopped Sitagliptin when the prescription ran out.
 - Glucose now 90-110 fasting (not testing otherwise)
 - Weight is 319 lbs (-5.6%)
 - A1C is 6.2%

6

SGLT-2 Glucose lowering effect **The Ohio State University Scheen, AJ; Drugs. Jan 2015, Volume 75, Issue 1, pp 33-59 **SGLT-2 Glucose lowering effect **Pac Glucose lowering effect **Pac Dapa Plac Dapa P

Favorable Metabolic Profile

Weight loss (meta analysis data, variable timing)

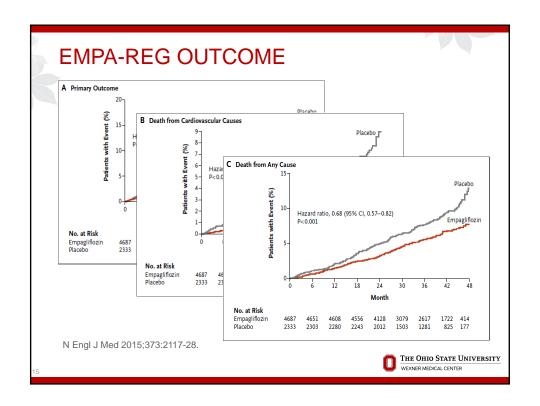
Cana: 2.37 – 3.26 kg
Dapa: 2.2 – 3.1 kg
Empa: 1.38 – 2.3 kg

Greater durability of A1C lowering effect

Not related to insulin secretion or beta cell function

Cardiovascular benefit

Scheen, AJ; Drugs. Jan 2015, Volume 75, Issue 1, pp 33-59



EMPA-REG OUTCOME

- Study enrolled over 7000 participants (97% completed protocol), A1C 7-10%, established CVD*
 - Mean age 63, 70% male
 - LDL 84-86 in all groups
 - Similar proportion stopped study drug and placebo
- Primary outcomes:
 - Death from CVD cause, nonfatal MI, nonfatal CVA
- Secondary outcome:
 - Composite of primary outcomes plus hospitalization for unstable angina.

N Engl J Med 2015;373:2117-28.

EMPA-REG OUTCOME

Glucose Control (vs placebo):

Dose	12 weeks	94 weeks	206 weeks
10 mg	-0.54 %	-0.42 %	-0.24%
25 mg	-0.6%	-0.47%	-0.36%

- A1C: 12 weeks: 7.4%, 94 weeks: 7.5%, 206 weeks: 7.81% (8.16% at 206 weeks in placebo group)
- All were treated to usual standard for lipids and HTN
- Higher % of patients in the placebo group received SU and insulin, antihypertensive meds, and anticoagulants (aspirin) post-baseline.

N Engl J Med 2015;373:2117-28.

Cons THE OHIO STATE UNIVERSITY WEXNER MEDICAL CENTER

Case 2

- 44 y/o morbidly obese female with hypertriglyceridemia, pancreatitis, and DM II for 8 years
 - Pioglitazone 45mg
 - Glargine 68 units at HS Home glucose:
 - Lispro 15 units AC plus 1:25 over 150 scale
 - A1C: 8.6%
 - Triglyceride: 348

- Meds:
 - Lisinopril 10mg, rosuvastatin 40mg, fenofibrate 137 mg, omega-3 2000mg twice a day
- - 114-270s fasting, 90-400 during the day
- Plan:
 - Diabetes education, dietary counseling, adjust insulin dose timing and titrate.

Case 2

- 5 months later (January):
 - Glargine 80 units at HS (unable to remember twice daily dosing)
 - Lispro 15 units AC + correction scale
 - Pioglitazone 45mg
 - A1C: 8.4%, Triglyceride: 2003
 - Plan:
 - Increase lispro to 17 units AC, increase correction scale, add canagliflozin 100mg

Case 2

- 3 months later (late April):
 - Admitted with nausea, vomiting, abdominal pain, and dizziness. She admits she stopped testing glucose, stopped giving insulin, but denies any precipitating illnesses or stressors.
 - Admitting labs:
 - Glucose: 257
 - Anion Gap: 29
 - **CO2: 9**
 - Venous pH: 7.17
 - Cr: 1.58 (baseline 0.84), Lactate: 1.5
- At follow-up in June:
 - No prior history of DKA
 - A1C now 7.2% off of canagliflozin

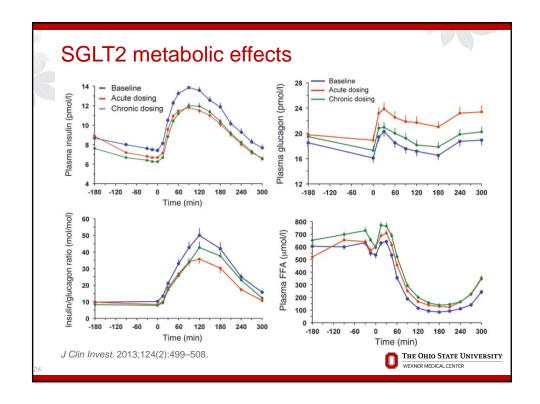
Side Effects (minor)

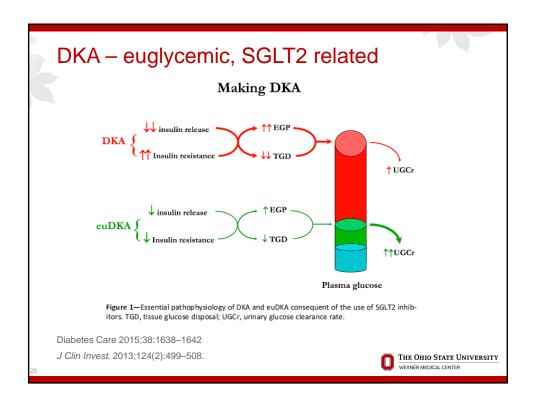
- Dehydration and orthostasis
 - Related to ostmotic diuresis effect
 - Can be worrisome in elderly patients
- Weight loss
 - Observed to occur in both adipose and lean tissue
 - Could exacerbate sarcopenia
- Pharmacodynamics are dependent on intact GFR
 - With reduced GFR (< 45), the effect of the medication is less than 20% compared with normal GFR

Scheen, AJ; Drugs. Jan 2015, Volume 75, Issue 1, pp 33-59

Side Effects (major, FDA warnings)

- DKA
 - May 2015
 - Fracture Risk
 - September 2015
 - Acidosis, UTI, and genital mycotic infection
 - December 2015

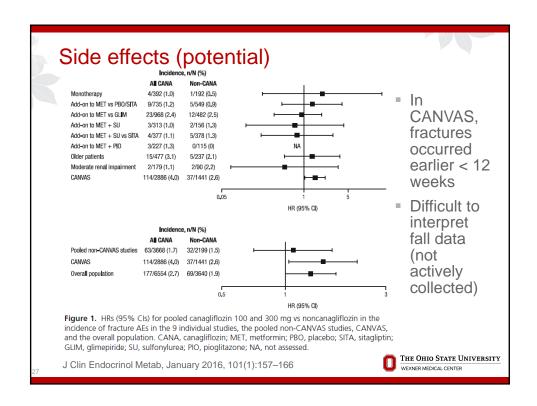

http://www.fda.gov/drugs/drugsafety/postmarketdrugsafetyinformationforpatients and providers/ucm 446852.htm


THE OHIO STATE UNIVERSITY
WEXNER MEDICAL CENTER

DKA - classic

- Clinical Definition:
 - Hyperglycemia (usually > 300)
 - Presence of ketones (beta-hydroxybutyrate)
 - Acidemia
- Pathophysiology:
 - Lack of insulin, or relative lack
 - Hyperglycemia with fatty acid oxidation (for fuel) leading to build up of ketones/acid
 - Osmotic diuresis and dehydration

Side Effects (potential)


- Initial bone/fracture related data (canagliflozin)
 - 716 women age 55 to 80 with osteopenia, at least three years post-menopause, assigned 1:1:1 placebo, cana 100mg, cana 300mg.
 - At 26 and 52 weeks, significant increase in serum CTx (breakdown marker) at both doses; Osteocalcin (bone formation) unchaged at 26 weeks then increased at 52 weeks (at both doses)
 - DXA showed statistical decrease in hip BMD at 52 and 104 weeks on both 100 and 300 mg doses of canagliflozin
 - Subjects with Fractures: 2.4%(cana) 1.7% (placebo)
 0.6% [0.0, 1.2] 95% CI

J Clin Endocrinol Metab. 2016;157: 44-51.

Kwohn H. Canagliflozin: clinical efficacy and safety. Endocrinology and Metabolic Drugs Advisory Committee Meeting; 2013

www.fda.gov/downloads/AdvisoryCommitteesMeetingMaterials/Drugs/

THE OHIO STATE UNIVERSITY
WEXNER MEDICAL CENTER

UTI/Mycotic infections

- In a systematic review and meta-analysis of 45 placebo controlled studies (11,232) and 13 active comparator studies (5,175) they reported the following odds ratios:
 - UTI (29 studies)
 - 1.34 (1.03 to 1.74) vs placebo
 - 1.42 (1.06 to 1.90) active comparator
 - Mycotic infection (28 studies)
 - 3.50 (2.46 to 4.99) vs placebo
 - 5.06 (3.44 to 7.45) active comparator

Ann Intern Med. 2013;159:262-274.

THE OHIO STATE UNIVERSITY
WEXNER MEDICAL CENTER